Design of Smart and Secured Healthcare Service Using Deep Learning with Modified SHA-256 Algorithm

Author:

Mohanty Mohan Debarchan,Das AbhishekORCID,Mohanty Mihir Narayan,Altameem Ayman,Nayak Soumya RanjanORCID,Saudagar Abdul Khader JilaniORCID,Poonia Ramesh Chandra

Abstract

Background: The modern era of human society has seen the rise of a different variety of diseases. The mortality rate, therefore, increases without adequate care which consequently causes wealth loss. It has become a priority of humans to take care of health and wealth in a genuine way. Methods: In this article, the authors endeavored to design a hospital management system with secured data processing. The proposed approach consists of three different phases. In the first phase, a smart healthcare system is proposed for providing an effective health service, especially to patients with a brain tumor. An application is developed that is compatible with Android and Microsoft-based operating systems. Through this application, a patient can enter the system either in person or from a remote place. As a result, the patient data are secured with the hospital and the patient only. It consists of patient registration, diagnosis, pathology, admission, and an insurance service module. Secondly, deep-learning-based tumor detection from brain MRI and EEG signals is proposed. Lastly, a modified SHA-256 encryption algorithm is proposed for secured medical insurance data processing which will help detect the fraud happening in healthcare insurance services. Standard SHA-256 is an algorithm which is secured for short data. In this case, the security issue is enhanced with a long data encryption scheme. The algorithm is modified for the generation of a long key and its combination. This can be applicable for insurance data, and medical data for secured financial and disease-related data. Results: The deep-learning models provide highly accurate results that help in deciding whether the patient will be admitted or not. The details of the patient entered at the designed portal are encrypted in the form of a 256-bit hash value for secured data management.

Funder

King Saud University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3