Uncertainty Ordinal Multi-Instance Learning for Breast Cancer Diagnosis

Author:

Xu XinzhengORCID,Guo Qiaoyu,Li Zhongnian,Li Dechun

Abstract

Ordinal multi-instance learning (OMIL) deals with the weak supervision scenario wherein instances in each training bag are not only multi-class but also have rank order relationships between classes, such as breast cancer, which has become one of the most frequent diseases in women. Most of the existing work has generally been to classify the region of interest (mass or microcalcification) on the mammogram as either benign or malignant, while ignoring the normal mammogram classification. Early screening for breast disease is particularly important for further diagnosis. Since early benign lesion areas on a mammogram are very similar to normal tissue, three classifications of mammograms for the improved screening of early benign lesions are necessary. In OMIL, an expert will only label the set of instances (bag), instead of labeling every instance. When labeling efforts are focused on the class of bags, ordinal classes of the instance inside the bag are not labeled. However, recent work on ordinal multi-instance has used the traditional support vector machine to solve the multi-classification problem without utilizing the ordinal information regarding the instances in the bag. In this paper, we propose a method that explicitly models the ordinal class information for bags and instances in bags. Specifically, we specify a key instance from the bag as a positive instance of bags, and design ordinal minimum uncertainty loss to iteratively optimize the selected key instances from the bags. The extensive experimental results clearly prove the effectiveness of the proposed ordinal instance-learning approach, which achieves 52.021% accuracy, 61.471% sensitivity, 47.206% specificity, 57.895% precision, and an 59.629% F1 score on a DDSM dataset.

Funder

National Natural Science Foundation of China

Fundamental Research Funds of Central Universities

Science and Technology Planning Project of Xuzhou

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Learning for Breast Abnormality Detection using Thermograms;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3