Fine-Grained Motion Recognition in At-Home Fitness Monitoring with Smartwatch: A Comparative Analysis of Explainable Deep Neural Networks

Author:

Yun Seok-Ho1,Kim Hyeon-Joo2ORCID,Ryu Jeh-Kwang1ORCID,Kim Seung-Chan2ORCID

Affiliation:

1. Department of Physical Education, Graduate School, Dongguk University, Seoul 04620, Republic of Korea

2. Machine Learning Systems Lab., College of Sports Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

The squat is a multi-joint exercise widely used for everyday at-home fitness. Focusing on the fine-grained classification of squat motions, we propose a smartwatch-based wearable system that can recognize subtle motion differences. For data collection, 52 participants were asked to perform one correct squat and five incorrect squats with three different arm postures (straight arm, crossed arm, and hands on waist). We utilized deep neural network-based models and adopted a conventional machine learning method (random forest) as a baseline. Experimental results revealed that the bidirectional GRU/LSTMs with an attention mechanism and the arm posture of hands on waist achieved the best test accuracy (F1-score) of 0.854 (0.856). High-dimensional embeddings in the latent space learned by attention-based models exhibit more clustered distributions than those by other DNN models, indicating that attention-based models learned features from the complex multivariate time-series motion signals more efficiently. To understand the underlying decision-making process of the machine-learning system, we analyzed the result of attention-based RNN models. The bidirectional GRU/LSTMs show a consistent pattern of attention for defined squat classes, but these models weigh the attention to the different kinematic events of the squat motion (e.g., descending and ascending). However, there was no significant difference found in classification performance.

Funder

Korea government

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3