Identifying High-Risk Factors of Depression in Middle-Aged Persons with a Novel Sons and Spouses Bayesian Network Model

Author:

Costello Francis JosephORCID,Kim CheongORCID,Kang Chang Min,Lee Kun ChangORCID

Abstract

It has been reported repeatedly that depression in middle-aged people may cause serious ramifications in public health. However, previous studies on this important research topic have focused on utilizing either traditional statistical methods (i.e., logistic regressions) or black-or-gray artificial intelligence (AI) methods (i.e., neural network, Support Vector Machine (SVM), ensemble). Previous studies lack suggesting more decision-maker-friendly methods, which need to produce clear interpretable results with information on cause and effect. For the sake of improving the quality of decisions of healthcare decision-makers, public health issues require identification of cause and effect information for any type of strategic healthcare initiative. In this sense, this paper proposes a novel approach to identify the main causes of depression in middle-aged people in Korea. The proposed method is the Sons and Spouses Bayesian network model, which is an extended version of conventional TAN (Tree-Augmented Naive Bayesian Network). The target dataset is a longitudinal dataset employed from the Korea National Health and Nutrition Examination Survey (KNHANES) database with a sample size of 8580. After developing the proposed Sons and Spouses Bayesian network model, we found thirteen main causes leading to depression. Then, genetic optimization was executed to reveal the most probable cause of depression in middle-aged people that would provide practical implications to field practitioners. Therefore, our proposed method can help healthcare decision-makers comprehend changes in depression status by employing what-if queries towards a target individual.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3