Morton Filter-Based Security Mechanism for Healthcare System in Cloud Computing

Author:

Bhatia SugandhORCID,Malhotra Jyoteesh

Abstract

Electronic health records contain the patient’s sensitive information. If these data are acquired by a malicious user, it will not only cause the pilferage of the patient’s personal data but also affect the diagnosis and treatment. One of the most challenging tasks in cloud-based healthcare systems is to provide security and privacy to electronic health records. Various probabilistic data structures and watermarking techniques were used in the cloud-based healthcare systems to secure patient’s data. Most of the existing studies focus on cuckoo and bloom filters, without considering their throughputs. In this research, a novel cloud security mechanism is introduced, which supersedes the shortcomings of existing approaches. The proposed solution enhances security with methods such as fragile watermark, least significant bit replacement watermarking, class reliability factor, and Morton filters included in the formation of the security mechanism. A Morton filter is an approximate set membership data structure (ASMDS) that proves many improvements to other data structures, such as cuckoo, bloom, semi-sorting cuckoo, and rank and select quotient filters. The Morton filter improves security; it supports insertions, deletions, and lookups operations and improves their respective throughputs by 0.9× to 15.5×, 1.3× to 1.6×, and 1.3× to 2.5×, when compared to cuckoo filters. We used Hadoop version 0.20.3, and the platform was Red Hat Enterprise Linux 6; we executed five experiments, and the average of the results has been taken. The results of the simulation work show that our proposed security mechanism provides an effective solution for secure data storage in cloud-based healthcare systems, with a load factor of 0.9. Furthermore, to aid cloud security in healthcare systems, we presented the motivation, objectives, related works, major research gaps, and materials and methods; we, thus, presented and implemented a cloud security mechanism, in the form of an algorithm and a set of results and conclusions.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference61 articles.

1. The Cloud Security Ecosystem: Technical, Legal, Business and Management Issues;Ko,2015

2. Research on Digital Forensic Readiness Design in a Cloud Computing-Based Smart Work Environment

3. An Efficient Search Algorithm for Large Encrypted Data by Homomorphic Encryption

4. Cuckoo Filter

5. Fundamentals of Digital Forensics;Kävrestad,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lightweight and robust authentication scheme for the healthcare system using public cloud server;PLOS ONE;2024-01-30

2. Targeted Antivirus Prophylaxis (TAP) Using ICT in a Gymnasium During a Pandemic;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

3. Probabilistic data structures in smart city: Survey, applications, challenges, and research directions;Journal of Ambient Intelligence and Smart Environments;2022-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3