How Can Hybrid Simulation Support Organizations in Assessing COVID-19 Containment Measures?

Author:

Cimini ChiaraORCID,Pezzotta GiudittaORCID,Lagorio AlexandraORCID,Pirola Fabiana,Cavalieri Sergio

Abstract

Simulation models have always been an aid in epidemiology for understanding the spread of epidemics and evaluating their containment policies. This paper illustrates how hybrid simulation can support companies in assessing COVID-19 containment measures in indoor environments. In particular, a Hybrid Simulation (HS) is presented. The HS model consists of an Agent-Based Simulation (ABS) to simulate the virus contagion model and a Discrete Event Simulation (DES) model to simulate the interactions between flows of people in an indoor environment. Compared with previous works in the field of simulation and COVID-19, this study provides the possibility to model the specific behaviors of individuals moving in time and space and the proposed HS model could be adapted to several epidemiological conditions (just setting different parameters in the agent-based model) and different kinds of facilities. The HS approach has been developed and then successfully tested with a real case study related to a university campus in northern Italy. The case study highlights the potentials of hybrid simulation in assessing the effectiveness of the containment measures adopted during the period under examination in the pandemic context. From a managerial perspective, this study, exploiting the complementarity of the ABM and DES approaches in a HS model, provides a complete and usable tool to support decision-makers in evaluating different contagion containment measures.

Funder

Ministero dell’Università e della Ricerca, Italy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference68 articles.

1. Characteristics of SARS-CoV-2 and COVID-19

2. Modelling Covid-19 under uncertainty: what can we expect?

3. A stochastic agent-based model of the SARS-CoV-2 epidemic in France

4. Modelli epidemiologici e vaccinazioni: Da Bernoulli a oggi;Groppi;Mat. Cult. E Soc. Riv. DellUnione Mat. Ital.,2018

5. An Introduction to Mathematical Epidemiology;Martcheva,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3