A Practical Application for Quantitative Brain Fatigue Evaluation Based on Machine Learning and Ballistocardiogram

Author:

Xu Yanting,Yang Zhengyuan,Li GangORCID,Tian Jinghong,Jiang Yonghua

Abstract

Brain fatigue is often associated with inattention, mental retardation, prolonged reaction time, decreased work efficiency, increased error rate, and other problems. In addition to the accumulation of fatigue, brain fatigue has become one of the important factors that harm our mental health. Therefore, it is of great significance to explore the practical and accurate brain fatigue detection method, especially for quantitative brain fatigue evaluation. In this study, a biomedical signal of ballistocardiogram (BCG), which does not require direct contact with human body, was collected by optical fiber sensor cushion during the whole process of cognitive tasks for 20 subjects. The heart rate variability (HRV) was calculated based on BCG signal. Machine learning classification model was built based on random forest to quantify and recognize brain fatigue. The results showed that: Firstly, the heart rate obtained from BCG signal was consistent with the result displayed by the medical equipment, and the absolute difference was less than 3 beats/min, and the mean error is 1.30 ± 0.81 beats/min; secondly, the random forest classifier for brain fatigue evaluation based on HRV can effectively identify the state of brain fatigue, with an accuracy rate of 96.54%; finally, the correlation between HRV and the accuracy was analyzed, and the correlation coefficient was as high as 0.98, which indicates that the accuracy can be used as an indicator for quantitative brain fatigue evaluation during the whole task. The results suggested that the brain fatigue quantification evaluation method based on the optical fiber sensor cushion and machine learning can carry out real-time brain fatigue detection on the human brain without disturbance, reduce the risk of human accidents in human–machine interaction systems, and improve mental health among the office and driving personnel.

Funder

National Natural Science Foundation of China

ZHEJIANG PROVINCIAL NATURAL SCIENCE FOUNDATION OF CHINA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3