Estimation of Surgery Durations Using Machine Learning Methods-A Cross-Country Multi-Site Collaborative Study

Author:

Lam Sean Shao Wei,Zaribafzadeh Hamed,Ang Boon Yew,Webster Wendy,Buckland DanielORCID,Mantyh Christopher,Tan Hiang KhoonORCID

Abstract

The scheduling of operating room (OR) slots requires the accurate prediction of surgery duration. We evaluated the performance of existing Moving Average (MA) based estimates with novel machine learning (ML)-based models of surgery durations across two sites in the US and Singapore. We used the Duke Protected Analytics Computing Environment (PACE) to facilitate data-sharing and big data analytics across the US and Singapore. Data from all colorectal surgery patients between 1 January 2012 and 31 December 2017 in Singapore and, 1 January 2015 to 31 December 2019 in the US were used, and 7585 cases and 3597 single and multiple procedure cases from Singapore and US were included. The ML models were based on categorical gradient boosting (CatBoost) models trained on common data fields shared by both institutions. The procedure codes were based on the Table of Surgical Procedure (TOSP) (Singapore) and the Current Procedural Terminology (CPT) codes (US). The two types of codes were mapped by surgical experts. The CPT codes were then transformed into the relative value unit (RVU). The ML models outperformed the baseline MA models. The MA, scheduled durations and procedure codes were found to have higher loadings as compared to surgeon factors. We further demonstrated the use of the Duke PACE in facilitating data-sharing and big data analytics.

Funder

Duke Duke NUS Research Collaboration Pilot Grant

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3