Abstract
This study addresses the problem of the automatic detection of disease states of the retina. In order to solve the abovementioned problem, this study develops an artificially intelligent model. The model is based on a customized 19-layer deep convolutional neural network called VGG-19 architecture. The model (VGG-19 architecture) is empowered by transfer learning. The model is designed so that it can learn from a large set of images taken with optical coherence tomography (OCT) and classify them into four conditions of the retina: (1) choroidal neovascularization, (2) drusen, (3) diabetic macular edema, and (4) normal form. The training datasets (taken from publicly available sources) consist of 84,568 instances of OCT retinal images. The datasets exhibit all four classes of retinal disease mentioned above. The proposed model achieved a 99.17% classification accuracy with 0.995 specificities and 0.99 sensitivity, making it better than the existing models. In addition, the proper statistical evaluation is done on the predictions using such performance measures as (1) area under the receiver operating characteristic curve, (2) Cohen’s kappa parameter, and (3) confusion matrix. Experimental results show that the proposed VGG-19 architecture coupled with transfer learning is an effective technique for automatically detecting the disease state of a retina.
Funder
Princess Nourah bint Abdulrahman University Researchers
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Subject
Health Information Management,Health Informatics,Health Policy,Leadership and Management
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献