Abstract
Temporal lobe epilepsy (TLE) is a network disorder of the brain. Network disorders predominately involve dysregulation of hippocampal function caused by neuronal hyperexcitability. However, the relationship between the macro- and microscopic changes in specific brain regions is uncertain. In this study, the pattern of brain atrophy in patients with TLE and hippocampal sclerosis (HS) was investigated using volumetry, and microscopic changes in specific lesions were observed to examine the anatomical correspondence with specific target lesions using diffusion tensor imaging (DTI) with statistical parametric mapping (SPM). This retrospective cross-sectional study enrolled 17 patients with TLE and HS. We manually measured the volumes of the hippocampus (HC), amygdala (AMG), entorhinal cortex, fornix, and thalamus (TH) bilaterally. The mean diffusivity and fractional anisotropy of each patient were then quantified and analyzed by a voxel-based statistical correlation method using SPM8. In right TLE with HS, there was no evidence of any abnormal diffusion properties associated with the volume reduction in specific brain regions. In left TLE with HS, there were significant changes in the volumes of the AMG, HC, and TH. Despite the small sample size, these differences in conditions were considered meaningful. Chronic left TLE with HS might cause structural changes in the AMG, HC, and TH, unlike right TLE with HS.
Funder
National Research Foundation of Korea
Subject
Health Information Management,Health Informatics,Health Policy,Leadership and Management