Non-Thermal Plasma Treatment Coupled with a Photocatalyst for Antimicrobial Performance of Ihram Cotton Fabric

Author:

Galaly Ahmed Rida,Dawood Nagia

Abstract

All Muslim pilgrims must wear Ihram clothes during the Hajj and Umrah seasons, which presents a great challenge regarding how to eliminate the spread of microbes attached to the cotton fabric of Ihram from the surrounding environment. Targeted fashion research of the recent past presents a new industrial treatment, which has led us to study the impact of heat directed from an atmospheric pressure plasma jet (APPJ), coupled with photocatalytic nanomaterials, for the antibacterial treatment of Escherichia coli (E. coli) attached to cotton fabric samples, to improve pollutant remediation. The average rates of heat transfer to the bacterial colonies attached to cotton fabric samples, as a function of the laminar mode, were 230 and 77 mW for dry and wet argon discharges, respectively. The jet temperatures (TJ) and heat transfer (QH) decreased more for wet argon discharge than for dry argon discharge. This is because, due to the wettability by TiO2 photocatalyst concentration dosage increases from 0 to 0.5 g L−1, a proportion of the energy from the APPJ photons is expended in overcoming the bandgap of TiO2 and is used in the creation of electron–hole pairs. In the Weibull deactivation function used for the investigation of the antibacterial treatment of E. coli microbes attached to cotton fabric samples, the deactivation kinetic rate of E. coli increased from 0.0065 to 0.0152 min−1 as the TiO2 precursor concentration increased. This means that the sterilization rate increased despite (TJ) and (QH) decreasing as the wettability by TiO2 photocatalyst increases. This may be due to photocatalytic disinfection and the generation of active substances, in addition to the effect of the incident plume of the non-thermal jet.

Funder

Umm al-Qura University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference52 articles.

1. Fundamentals of Gaseous Ionization and Plasma Electronics;Nasser,1971

2. Gas Discharge Physics;Raizer,1991

3. Environmental and economic vision of plasma treatment of waste in Makkah

4. 16th Treatment of Wastes by Plasma Gasification in Makkahhttps://drive.uqu.edu.sa/_/hajj/files/multaqa/143716.pdf

5. Fast inactivation of microbes and degradation of organic compounds dissolved in water by thermal plasma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3