Effect of Substrate Temperature on Morphological, Structural, and Optical Properties of Doped Layer on SiO2-on-Silicon and Si3N4-on-Silicon Substrate

Author:

Kamil Suraya AhmadORCID,Jose GinORCID

Abstract

A high concentration of Er3+ without clustering issues is essential in an Er-doped waveguide amplifier as it is needed to produce a high gain and low noise signal. Ultrafast laser plasma doping is a technique that facilitates the blending of femtosecond laser-produced plasma from an Er-doped TeO2 glass with a substrate to form a high Er3+ concentration layer. The influence of substrate temperature on the morphological, structural, and optical properties was studied and reported in this paper. Analysis of the doped substrates using scanning electron microscopy (SEM) confirmed that temperatures up to approximately 400 °C are insufficient for the incoming plasma plume to modify the strong covalent bonds of silica (SiO2), and the doping process could not take place. The higher temperature used caused the materials from Er-doped tellurite glass to diffuse deeper (except Te with smaller concentration) into silica, which created a thicker film. SEM images showed that Er-doped tellurite glass was successfully diffused in the Si3N4. However, the doping was not as homogeneous as in silica.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3