Abstract
Polyelectrolytes (PEs) have been the aim of many research studies over the past years. PE films are prepared by the simple and versatile layer-by-layer (LbL) approach using alternating assemblies of polymer pairs involving a polyanion and a polycation. The adsorption of the alternating PE multiple layers is driven by different forces (i.e., electrostatic interactions, H-bonding, charge transfer interactions, hydrophobic forces, etc.), which enable an accurate control over the physical properties of the film (i.e., thickness at the nanoscale and morphology). These PE nano-assemblies have a wide range of biomedical and healthcare applications, including drug delivery, protein delivery, tissue engineering, wound healing, and so forth. This review provides a concise overview of the most outstanding research on the design and fabrication of PE nanofilms. Their nanostructures, molecular interactions with biomolecules, and applications in the biomedical field are briefly discussed. Finally, the perspectives of further research directions in the development of LbL nano-assemblies for healthcare and medical applications are highlighted.
Subject
General Materials Science,General Chemical Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献