Abstract
Ball-milled biochar (BMBC) is a typical engineering material that has promising application prospects in remediating contaminated soil and water. It is fundamental to rate the transport behaviors of BMBC in the underground environment before extensive use. In this study, the effects of the ubiquitous cations (Na+, Mg2+, and Al3+) and model organic matter (humic acid) on the transport of BMBC were investigated using laboratory column experiments. The results demonstrated the facilitated effect of HA on the transport of BMBC due to the negatively charged surface and steric effect under neutral conditions. HA and ionic strength manifested an antagonistic effect on the transport of BMBC, where the presence of one could weaken the effect from the other. We also found the charge reversal of the BMBC surface in the presence of Mg2+, thus enhancing the deposition of BMBC onto the medium surface. On the other hand, the charge reversal from Al3+-coupled acid conditions led to the restabilization and transport of BMBC in porous media. Therefore, the rational usage of BMBC is indispensable and more attention should be paid to the composition and change in underground water that might facilitate the transport of BMBC and thus lead to negative environmental implications.
Funder
National key research and development program
National Natural Science Foundation of China
Natural Science Basic Research Plan in Shaanxi Province of China
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献