The Combination of Two-Dimensional Nanomaterials with Metal Oxide Nanoparticles for Gas Sensors: A Review

Author:

Li Tao,Yin Wen,Gao Shouwu,Sun Yaning,Xu PeilongORCID,Wu Shaohua,Kong HaoORCID,Yang Guozheng,Wei GangORCID

Abstract

Metal oxide nanoparticles have been widely utilized for the fabrication of functional gas sensors to determine various flammable, explosive, toxic, and harmful gases due to their advantages of low cost, fast response, and high sensitivity. However, metal oxide-based gas sensors reveal the shortcomings of high operating temperature, high power requirement, and low selectivity, which limited their rapid development in the fabrication of high-performance gas sensors. The combination of metal oxides with two-dimensional (2D) nanomaterials to construct a heterostructure can hybridize the advantages of each other and overcome their respective shortcomings, thereby improving the sensing performance of the fabricated gas sensors. In this review, we present recent advances in the fabrication of metal oxide-, 2D nanomaterials-, as well as 2D material/metal oxide composite-based gas sensors with highly sensitive and selective functions. To achieve this aim, we firstly introduce the working principles of various gas sensors, and then discuss the factors that could affect the sensitivity of gas sensors. After that, a lot of cases on the fabrication of gas sensors by using metal oxides, 2D materials, and 2D material/metal oxide composites are demonstrated. Finally, we summarize the current development and discuss potential research directions in this promising topic. We believe in this work is helpful for the readers in multidiscipline research fields like materials science, nanotechnology, chemical engineering, environmental science, and other related aspects.

Funder

Taishan Scholars Program of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3