Abstract
Fano’s inequality is one of the most elementary, ubiquitous, and important tools in information theory. Using majorization theory, Fano’s inequality is generalized to a broad class of information measures, which contains those of Shannon and Rényi. When specialized to these measures, it recovers and generalizes the classical inequalities. Key to the derivation is the construction of an appropriate conditional distribution inducing a desired marginal distribution on a countably infinite alphabet. The construction is based on the infinite-dimensional version of Birkhoff’s theorem proven by Révész [Acta Math. Hungar. 1962, 3, 188–198], and the constraint of maintaining a desired marginal distribution is similar to coupling in probability theory. Using our Fano-type inequalities for Shannon’s and Rényi’s information measures, we also investigate the asymptotic behavior of the sequence of Shannon’s and Rényi’s equivocations when the error probabilities vanish. This asymptotic behavior provides a novel characterization of the asymptotic equipartition property (AEP) via Fano’s inequality.
Funder
Japan Society for the Promotion of Science
Subject
General Physics and Astronomy
Reference90 articles.
1. Class Notes for Transmission of Information;Fano,1952
2. Elements of Information Theory;Cover,2006
3. Network Information Theory;El Gamal,2011
4. Information Theory and Network Coding;Yeung,2008
5. Estimating Mutual Information Via Kolmogorov Distance
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献