Production and 3D Printing of a Nanocellulose-Based Composite Filament Composed of Polymer-Modified Cellulose Nanofibrils and High-Density Polyethylene (HDPE) for the Fabrication of 3D Complex Shapes

Author:

Dalloul Feras,Mietner Jakob BenediktORCID,Navarro Julien R. G.

Abstract

This work aims to produce a 3D-printable bio-based filament composed of high-density polyethylene (HDPE) and chemically modified cellulose nanofibrils. Printing using HDPE as a raw material is challenging due to its massive shrinkage and warping problems. This paper presents a new method to overcome those difficulties by enhancing the mechanical properties and achieving better print quality. This was achieved using modified cellulose nanofibrils (CNFs) as fillers. Firstly, CNF was converted to a CNF-based macroinitiator through an esterification reaction, followed by a surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) of the hydrophobic monomer stearyl acrylate. Poly stearyl acrylate-grafted cellulose nanofibrils, CNF-PSAs, were synthesized, purified and characterized with ATR-FTIR, 13C CP-MAS NMR, FE-SEM and water contact angle measurements. A composite was successfully produced using a twin-screw extruder with a CNF-PSA content of 10 wt.%. Mechanical tests were carried out with tensile testing. An increase in the mechanical properties, up to 23% for the Young’s modulus, was observed. A morphologic analysis also revealed the good matrix/CNF compatibility, as no CNF aggregates could be observed. A reduction in the warping behavior for the composite filament compared to HDPE was assessed using a circular arc method. The 3D printing of complex objects using the CNF-PSA/HDPE filament resulted in better print quality when compared to the object printed with neat HDPE. Therefore, it could be concluded that CNF-PSA was a suitable filler for the reinforcement of HDPE, thus, rendering it suitable for 3D printing.

Funder

Fachagentur Nachwachsende Rohstoffe e.V

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3