Experimental Study on Mechanical Properties of the Sandwich Composite Structure Reinforced by Basalt Fiber and Nomex Honeycomb

Author:

Li Zongwen,Ma Jianxun

Abstract

The new sandwich composite structure formed by basalt fiber resin-based sheets and Nomex honeycomb has the advantages of being lightweight and environmentally friendly, as well as having excellent electromagnetic performance. It has very important application prospects in traditional and emerging fields. In this paper, the mechanical properties of this new sandwich composite structure are studied. The results show that, under the condition of flatwise compression, increasing the height of the honeycomb is conducive to improving the compressive capacity of the structure. However, the height should be controlled within a certain range in case of instability and yield of the honeycomb; under the bending conditions, the bending failure mode of the composite structure has gone through five stages. Owing to the honeycomb manufacturing process, the orientation of the honeycomb also has a great influence on the bending strength of the structure. After further analysis, it is found that basalt fiber sheets contribute the most to the bending stiffness of the structure, and the main role of honeycomb is to provide out-of-plane support. In both cases, the failure of specimens is ductile, and the combined structure still has a small amount of bearing capacity and maintains structural integrity. Research on this new type of composite structural material is very beneficial for promoting the application and development of green and lightweight special functional materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of span length on the flexural properties of glass and basalt fiber reinforced sandwich structures with balsa wood core for sustainable shipbuilding;Composite Structures;2024-07

2. The effect of core gap on different facesheet thicknesses of Nomex honeycomb sandwich structures subjected to in-plane compression;Structures;2024-05

3. Efficient design of composite honeycomb sandwich panels under blast loading;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-03-14

4. Mechanical performance of stitched foam-filled honeycomb sandwich panels;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-05

5. FRP Radome: A Short Review;Journal of Aerospace Sciences and Technologies;2023-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3