2-Arylpropionic Acid Pyrazolamides as Cannabinoid CB2 Receptor Inverse Agonists Endowed with Anti-Inflammatory Properties

Author:

de Oliveira Daniela R.,Maia Rodolfo C.,de Carvalho França Patrícia R.,Fernandes Patrícia D.ORCID,Barbosa GiseleORCID,Lima Lídia M.ORCID,Fraga Carlos A. ManssourORCID

Abstract

Among the most recent proposals regarding the mechanism of action of dipyrone, the modulation of cannabinoid receptors CB1 and CB2 appears to be a promising hypothesis. In this context, the present work describes a series of five novel pyrazolamides (7–11) designed as molecular hybrids of dipyrone metabolites and NSAIDs, such as ibuprofen and flurbiprofen. Target compounds were obtained in good overall yields (50–80%) by classical amide coupling between 4-aminoantipyrine and arylacetic or arylpropionic acids, followed in some cases by N-methylation of the amide group. The compounds presented good physicochemical properties in addition to stability to chemical (pH 2 and 7.4) and enzymatic (plasma esterases) hydrolysis and showed medium to high gastrointestinal and BBB permeabilities in the PAMPA assay. When subjected to functional testing on CB1- or CB2-transfected cells, compounds demonstrated an inverse agonist profile on CB2 receptors and the further characterization of compound LASSBio-2265 (11) revealed moderate binding affinity to CB2 receptor (Ki = 16 µM) with an EC50 = 0.36 µM (Emax = 63%). LASSBio-2265 (11) (at 1, 3, and 10 mg/kg p.o.) was investigated in the formalin test in mice and a remarkable analgesic activity in the late inflammatory phase was observed, suggesting it could be promising for the treatment of pain syndromes associated with chronic inflammatory diseases.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

INCT-INOFAR

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3