Study on Rheological Behavior of Micro/Nano-Silicon Carbide Particles in Ethanol by Selecting Efficient Dispersants

Author:

Luo Guoqiang,Zhang Zhuang,Hu Jianian,Zhang JianORCID,Sun Yi,Shen Qiang,Zhang Lianmeng

Abstract

A colloidal stability study of a nonaqueous silicon carbide suspension is of great significance for preparing special silicon carbide ceramics by colloidal processing. In this paper, three different chemical dispersants, which are amphiphilic, acidophilic, and alkaliphilic, are selected to compare their ability to stabilize nonaqueous slurries of silicon carbide. The analysis of the flow index factor is first used to estimate the colloidal stability of the suspensions. The results show that the addition of only 5 wt.% polyvinylpyrrolidone (PVP) forms a silicon carbide slurry with a low viscosity value of 17 mPa⋅s at 25 s−1. In addition, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS)measurements indicate that the PVP molecule is successfully adsorbed on the surface of silicon carbide. The different adsorption models are fitted, and the adsorption of PVP molecules on the surface of silicon carbide belongs to the Langmuir single-layer adsorption model. At the optimal PVP amount, the volume content of the suspension is as high as 22.27 vol.%, a Newtonian-like fluid still appears, and no agglomerate structure is formed in the system. After the volume content exceeds 22.27 vol.%, the flow index factor of the slurry begins to plummet, indicating that the slurry begins to transform from a Newtonian-like fluid to a shear-thinning fluid. The particles undergo inevitable agglomeration accompanied by the emergence of yield stress. Finally, a maximum solid loading of the system is predicted to be 46 vol.%, using the Krieger-Dougherty model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3