Analysis of Operational Control Data and Development of a Predictive Model of the Content of the Target Component in Melting Products

Author:

Vasilyeva Natalia1ORCID,Pavlyuk Ivan1

Affiliation:

1. Mineral Raw Material Processing Faculty, Saint Petersburg Mining University, 199106 St. Petersburg, Russia

Abstract

The relevance of this research is due to the need to stabilize the composition of the melting products of copper–nickel sulfide raw materials. Statistical methods of analyzing the historical data of the real technological object and the correlation analysis of process parameters are described. Factors that exert the greatest influence on the main output parameter (the fraction of copper in a matte) and ensure the physical–chemical transformations are revealed: total charge rate, overall blast volume, oxygen content in the blast (degree of oxygen enrichment in the blowing), temperature of exhaust gases in the off-gas duct, temperature of feed in the smelting zone, copper content in the matte. An approach to the processing of real-time data for the development of a mathematical model for control of the melting process is proposed. The stages of processing of the real-time information are considered. The adequacy of the models was assessed by the value of the mean absolute error (MAE) between the calculated and experimental values.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Reference37 articles.

1. Big data and data science methods for management research;George;Acad. Manag. J.,2016

2. Deploying fog computing in industrial internet of things and industry 4.0;Aazam;IEEE Trans. Ind. Inform.,2018

3. Comparative Study on Tools and Techniques of Big Data Analysis;Thillaieswari;Int. J. Adv. Netw. Appl. (IJANA),2017

4. Determination of process variables in melt-based manufacturing processes;Thombansen;Int. J. Comput. Integr. Manuf.,2016

5. Complex and deep processing of mineral raw materials of natural and technogenic origin: State and prospects;Aleksandrova;J. Min. Inst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3