Abstract
Intelligent approaches in sports using IoT devices to gather data, attempting to optimize athlete’s training and performance, are cutting edge research. Synergies between recent wearable hardware and wireless communication strategies, together with the advances in intelligent algorithms, which are able to perform online pattern recognition and classification with seamless results, are at the front line of high-performance sports coaching. In this work, an intelligent data analytics system for swimmer performance is proposed. The system includes (i) pre-processing of raw signals; (ii) feature representation of wearable sensors and biosensors; (iii) online recognition of the swimming style and turns; and (iv) post-analysis of the performance for coaching decision support, including stroke counting and average speed. The system is supported by wearable inertial (AHRS) and biosensors (heart rate and pulse oximetry) placed on a swimmer’s body. Radio-frequency links are employed to communicate with the heart rate sensor and the station in the vicinity of the swimming pool, where analytics is carried out. Experiments were carried out in a real training setup, including 10 athletes aged 15 to 17 years. This scenario resulted in a set of circa 8000 samples. The experimental results show that the proposed system for intelligent swimming analytics with wearable sensors effectively yields immediate feedback to coaches and swimmers based on real-time data analysis. The best result was achieved with a Random Forest classifier with a macro-averaged F1 of 95.02%. The benefit of the proposed framework was demonstrated by effectively supporting coaches while monitoring the training of several swimmers.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference30 articles.
1. A Novel Macro-Micro Approach for Swimming Analysis in Main Swimming Techniques Using IMU Sensors;Hamidi Rad;Front. Bioeng. Biotechnol.,2021
2. WIMU: Wearable Inertial Monitoring Unit-A MEMS-Based Device for Swimming Performance Analysishttps://paginas.fe.up.pt/~dee08011/files/Download/BIODEVICES2011.pdf
3. Machine learning of swimming data via wisdom of crowd and regression analysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献