Towards an Optimal Footprint Based Area Coverage Strategy for a False-Ceiling Inspection Robot

Author:

Pathmakumar ThejusORCID,Sivanantham VinuORCID,Anantha Padmanabha Saurav GhanteORCID,Elara Mohan RajeshORCID,Tun Thein ThanORCID

Abstract

False-ceiling inspection is a critical factor in pest-control management within a built infrastructure. Conventionally, the false-ceiling inspection is done manually, which is time-consuming and unsafe. A lightweight robot is considered a good solution for automated false-ceiling inspection. However, due to the constraints imposed by less load carrying capacity and brittleness of false ceilings, the inspection robots cannot rely upon heavy batteries, sensors, and computation payloads for enhancing task performance. Hence, the strategy for inspection has to ensure efficiency and best performance. This work presents an optimal functional footprint approach for the robot to maximize the efficiency of an inspection task. With a conventional footprint approach in path planning, complete coverage inspection may become inefficient. In this work, the camera installation parameters are considered as the footprint defining parameters for the false ceiling inspection. An evolutionary algorithm-based multi-objective optimization framework is utilized to derive the optimal robot footprint by minimizing the area missed and path-length taken for the inspection task. The effectiveness of the proposed approach is analyzed using numerical simulations. The results are validated on an in-house developed false-ceiling inspection robot—Raptor—by experiment trials on a false-ceiling test-bed.

Funder

Agency for Science, Technology and Research

National Robotics Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. Pest Control Market by Pest Typehttps://www.marketsandmarkets.com/Market-Reports/pest-control-market-144665518.html

2. QUINCE Market Insightshttps://www.globenewswire.com/news-release/2021/05/24/2234537/0/en/Global-Pest-Control-Market-is-Estimated-to-Grow-at-a-CAGR-of-5-25-from-2021-to-2030.html

3. Rodent-borne diseases and their public health importance in Iran

4. Rodent-borne infections in rural Ghanaian farming communities

5. Rodent-borne diseases and their risks for public health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3