Fine Particulate Matter Perturbs the Pulmonary Microbiota in Broiler Chickens

Author:

Zhou Ying1,Xu Bin1,Wang Linyi1,Zhang Chaoshuai1,Li Shaoyu1

Affiliation:

1. Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

Abstract

(1) Fine particulate matter (PM2.5) seriously affects the respiratory tract health of both animals and humans. Growing evidence indicates that the pulmonary microbiota is involved in the development of respiratory tract health; however, there is still much that is unknown about the specific changes of pulmonary microbiota caused by PM2.5 in broilers. (2) In this experiment, a total of 48 broilers were randomly divided into a control group and PM-exposure group. The experiment lasted for 21 days. Microbiota, inflammation biomarkers, and histological markers in the lungs were determined. (3) On the last day of the experiment, PM significantly disrupted the structure of lung tissue and induced chronic pulmonary inflammation by increasing IL-6, TNFα, and IFNγ expression and decreasing IL-10 expression. PM exposure significantly altered the α and β diversity of pulmonary microbiota. At the phylum level, PM exposure significantly decreased the Firmicutes abundance and increased the abundance of Actinobacteria and Proteobacteria. At the genus level, PM exposure significantly increased the abundance of Rhodococcus, Achromobacter, Pseudomonas, and Ochrobactrum. We also observed positive associations of the above altered genera with lung TNFα and IFNγ expression. (4) The results suggest that PM perturbs the pulmonary microbiota and induces chronic inflammation, and the pulmonary microbiota possibly contributes to the development of lung inflammation.

Funder

China Agriculture Research System of MOF and MARA

Henan Postdoctoral Foundation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3