Ag/Ag2O as a Co-Catalyst in TiO2 Photocatalysis: Effect of the Co-Catalyst/Photocatalyst Mass Ratio

Author:

Akel Soukaina,Dillert Ralf,Balayeva Narmina,Boughaled Redouan,Koch Julian,El Azzouzi Mohammed,Bahnemann Detlef

Abstract

Mixtures and composites of Ag/Ag2O and TiO2 (P25) with varying mass ratios of Ag/Ag2O were prepared, employing two methods. Mechanical mixtures (TM) were obtained by the sonication of a suspension containing TiO2 and Ag/Ag2O. Composites (TC) were prepared by a precipitation method employing TiO2 and AgNO3. Powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ag(0) and Ag2O. The activity of the materials was determined employing methylene blue (MB) as the probe compound. Bleaching of MB was observed in the presence of all materials. The bleaching rate was found to increase with increasing amounts of TiO2 under UV/vis light. In contrast, the MB bleaching rate decreased with increasing TiO2 content upon visible light illumination. XRD and XPS data indicate that Ag2O acts as an electron acceptor in the light-induced reaction of MB and is transformed by reduction of Ag+, yielding Ag(0). As a second light-induced reaction, the evolution of molecular hydrogen from aqueous methanol was investigated. Significant H2 evolution rates were only determined in the presence of materials containing more than 50 mass% of TiO2. The experimental results suggest that Ag/Ag2O is not stable under the experimental conditions. Therefore, to address Ag/Ag2O as a (photo)catalytically active material does not seem appropriate.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference51 articles.

1. Mechanisms of Organic Transformations on Semiconductor Particles;Bahnemann,1991

2. Environmental Applications of Semiconductor Photocatalysis

3. Photocatalytic Detoxification of Polluted Waters;Bahnemann,1999

4. Titanium dioxide photocatalysis

5. Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3