Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application

Author:

Compagnoni Matteo,Villa Alberto,Bahdori Elnaz,Morgan David,Prati Laura,Dimitratos Nikolaos,Rossetti Ilenia,Ramis GianguidoORCID

Abstract

The continuous increase in scientific reports concerning photocatalysis and in particular CO2 photoreduction in recent years reveals the high degree of interest around the topic. However, the adsorption and activation mechanisms of CO2 on TiO2, the most used photocatalyst, are poorly understood and investigated. Gold nanoparticles were prepared by a modified deposition-precipitation method using urea and a chemical reductant. Bare P25 was used as reference. Combined spectroscopic investigations of fresh and spent samples with photoactivity studies reported in this article provide new insights to the role of CO2 adsorption and carbonate formation on Au/TiO2 during CO2 photocatalytic reduction. The key intermediates’ and products’ adsorption (CO, methanol, ethanol) was studied, coupled with X-ray photoelectron microscopy (XPS) and UV-Visible spectroscopy. The adsorption of CO2 on fresh and spent catalysts changes radically considering the carbonate formation and the gold surface presence. Methanol and ethanol revealed new adsorbed species on Au with respect to bare titania. The characterisation of the spent catalysts revealed the good stability of these samples.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3