The Mechanism of Adsorption, Diffusion, and Photocatalytic Reaction of Organic Molecules on TiO2 Revealed by Means of On-Site Scanning Tunneling Microscopy Observations

Author:

Huo PeipeiORCID,Kumar Parveen,Liu Bo

Abstract

The interaction of organic molecules and titanium dioxide (TiO2) plays a crucial role in many industry-oriented applications and an understanding of its mechanism can be helpful for the improvement of catalytic efficiency of TiO2. Scanning tunneling microscopy (STM) has been proved to be a powerful tool in characterizing reaction pathways due to its ability in providing on-site images during the catalytic process. Over the past two decades, many research interests have been focused on the elementary reaction steps, such as adsorption, diffusion, and photocatalytic reaction, occurring between organic molecules and model TiO2 surfaces. This review collects the recent studies where STM was utilized to study the interaction of TiO2 with three classes of representative organic molecules, i.e., alcohols, carboxylic acids, and aromatic compounds. STM can provide direct evidence for the adsorption configuration, diffusion route, and photocatalytic pathway. In addition, the combination of STM with other techniques, including photoemission spectroscopy (PES), temperature programmed desorption (TPD), and density functional theory (DFT), have been discussed for more insights related to organic molecules-TiO2 interaction.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3