Author:
Yu Lei,Song Min,Wei Yuexing,Xiao Jun
Abstract
To promote the adsorption and activation of carbon dioxide in the dry reforming of methane (DRM), Ni and Al2O3 were coprecipitated on activated carbon fibers (ACF). Various characterization methods were adopted in order to investigate the surface characteristics of different catalysts. Chemisorption characterization results, such as H2-temperature programmed reduction (H2-TPR), H2-temperature programmed desorption (H2-TPD), and CO2-temperature programmed desorption (CO2-TPD) illustrated that ACF in a nickel-based catalyst could enhance the basic sites and improve the metal dispersion on a catalyst surface, which is beneficial for the adsorption and activation of feed gas. The coprecipitated coating on ACF proved by scanning electron microscope (SEM) can prevent the carbon of ACF from participating in the reaction, while retain good surface properties of carbon fibers. X-ray diffraction (XRD) patterns illustrated that the ACF in a nickel-based catalyst could decrease the crystallite size of the spinel NiAl2O4, which is beneficial for methane reforming. In addition, the Fourier transform infrared spectroscopy (FTIR) of different catalysts revealed that the added ACF could provide abundant functional groups on the surface, which could be the intermediate product of DRM, and effectively promote the reaction. Different to the catalyst supported on single alumina, the performance evaluation and stability test proved that the catalyst added with ACF exhibited a better catalytic performance especially for CO2 conversion. Moreover, based on the characterization results as well as some related literature, the dry reforming mechanism over optimum catalyst was derived.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献