Electrochemical Oxidation of Amines Using a Nitroxyl Radical Catalyst and the Electroanalysis of Lidocaine

Author:

Sato Katsuhiko,Ono Tetsuya,Sasano Yusuke,Sato Fumiya,Kumano Masayuki,Yoshida Kentaro,Dairaku Takenori,Iwabuchi YoshiharuORCID,Kashiwagi Yoshitomo

Abstract

The nitroxyl radical of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) can electro-oxidize not only alcohols but also amines. However, TEMPO has low activity in a neutral aqueous solution due to the large steric hindrance around the nitroxyl radical, which is the active site. Therefore, nortropine N-oxyl (NNO) was synthesized to improve the catalytic ability of TEMPO and to investigate the electrolytic oxidation effect on amines from anodic current changes. Ethylamine, diethylamine, triethylamine, tetraethylamine, isopropylamine, and tert-butylamine were investigated. The results indicated that TEMPO produced no response current for any of the amines under physiological conditions; however, NNO did function as an electrolytic oxidation catalyst for diethylamine, triethylamine, and isopropylamine. The anodic current depended on amine concentration, which suggests that NNO can be used as an electrochemical sensor for amine compounds. In addition, electrochemical detection of lidocaine, a local anesthetic containing a tertiary amine structure, was demonstrated using NNO with a calibration curve of 0.1–10 mM.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3