Author:
Arevalo-Bastante Alejandra,Martin-Martinez Maria,Álvarez-Montero M.,Rodriguez Juan,Gómez-Sainero Luisa
Abstract
This study analyzes the effect of the reduction temperature on the properties of Rh, Pt and Pd catalysts supported on activated carbon and their performance in the hydrodechlorination (HDC) of dichloromethane (DCM). The reduction temperature plays an important role in the oxidation state, size and dispersion of the metallic phase. Pd is more prone to sintering, followed by Pt, while Rh is more resistant. The ratio of zero-valent to electro-deficient metal increases with the reduction temperature, with that effect being more remarkable for Pd and Pt. The higher resistance to sintering of Rh and the higher stability of electro-deficient species under thermal reductive treatment can be attributed to a stronger interaction with surface oxygen functionalities. Dechlorination activity and a TOF increase with reduction temperature (250–450 °C) occurred in the case of Pt/C catalyst, while a great decrease of both was observed for Pd/C, and no significant effect was found for Rh/C. Pt0 represents the main active species for HDC reaction in Pt/C. Therefore, increasing the relative amount of these species increased the TOF value, compensating for the loss of dispersion. In contrast, Pdn+ appears as the main active species in Pd/C and their relatively decreasing occurrence together with the significant decrease of metallic area reduces the HDC activity. Rh/C catalyst suffered only small changes in dispersion and metal oxidation state with the reduction temperature and thus this variable barely affected its HDC activity.
Funder
Ministerio de Economía y Competitividad
Comunidad de Madrid
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献