Breather Turbulence: Exact Spectral and Stochastic Solutions of the Nonlinear Schrödinger Equation

Author:

Osborne

Abstract

I address the problem of breather turbulence in ocean waves from the point of view of the exact spectral solutions of the nonlinear Schrödinger (NLS) equation using two tools of mathematical physics: (1) the inverse scattering transform (IST) for periodic/quasiperiodic boundary conditions (also referred to as finite gap theory (FGT) in the Russian literature) and (2) quasiperiodic Fourier series, both of which enhance the physical and mathematical understanding of complicated nonlinear phenomena in water waves. The basic approach I refer to is nonlinear Fourier analysis (NLFA). The formulation describes wave motion with spectral components consisting of sine waves, Stokes waves and breather packets that nonlinearly interact pair-wise with one another. This contrasts to the simpler picture of standard Fourier analysis in which one linearly superposes sine waves. Breather trains are coherent wave packets that “breath” up and down during their lifetime “cycle” as they propagate, a phenomenon related to Fermi-Pasta-Ulam (FPU) recurrence. The central wave of a breather, when the packet is at its maximum height of the FPU cycle, is often treated as a kind of rogue wave. Breather turbulence occurs when the number of breathers in a measured time series is large, typically several hundred per hour. Because of the prevalence of rogue waves in breather turbulence, I call this exceptional type of sea state a breather sea or rogue sea. Here I provide theoretical tools for a physical and dynamical understanding of the recent results of Osborne et al. (Ocean Dynamics, 2019, 69, pp. 187–219) in which dense breather turbulence was found in experimental surface wave data in Currituck Sound, North Carolina. Quasiperiodic Fourier series are important in the study of ocean waves because they provide a simpler theoretical interpretation and faster numerical implementation of the NLFA, with respect to the IST, particularly with regard to determination of the breather spectrum and their associated phases that are here treated in the so-called nonlinear random phase approximation. The actual material developed here focuses on results necessary for the analysis and interpretation of shipboard/offshore platform radar scans and for airborne lidar and synthetic aperture radar (SAR) measurements.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference64 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3