Numerical Optimization of a Stall Margin Enhancing Recirculation Channel for an Axial Compressor

Author:

Kawase Motoyuki,Rona AldoORCID

Abstract

A proof of concept is provided by computational fluid dynamic simulations of a new recirculating type casing treatment. This treatment aims at extending the stable operating range of highly loaded axial compressors, so to improve the safety of sorties of high-speed, high-performance aircraft powered by high specific thrust engines. This casing treatment, featuring an axisymmetric recirculation channel, is evaluated on the NASA rotor 37 test case by steady and unsteady Reynolds Averaged Navier Stokes (RANS) simulations, using the realizable k-ε model. Flow blockage at the recirculation channel outlet was mitigated by chamfering the exit of the recirculation channel inner wall. The channel axial location from the rotor blade tip leading edge was optimized parametrically over the range −4.6% to 47.6% of the rotor tip axial chord c z . Locating the channel at 18.2% c z provided the best stall margin gain of approximately 5.5% compared to the untreated rotor. No rotor adiabatic efficiency was lost by the application of this casing treatment. The investigation into the flow structure with the recirculating channel gave a good insight into how the new casing treatment generates this benefit. The combination of stall margin gain at no rotor adiabatic efficiency loss makes this design attractive for applications to high-speed gas turbine engines.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3