An Efficient Iterative Method for Looped Pipe Network Hydraulics Free of Flow-Corrections

Author:

Brkić DejanORCID,Praks PavelORCID

Abstract

The original and improved versions of the Hardy Cross iterative method with related modifications are today widely used for the calculation of fluid flow through conduits in loop-like distribution networks of pipes with known node fluid consumptions. Fluid in these networks is usually natural gas for distribution in municipalities, water in waterworks or hot water in district heating systems, air in ventilation systems in buildings and mines, etc. Since the resistances in these networks depend on flow, the problem is not linear like in electrical circuits, and an iterative procedure must be used. In both versions of the Hardy Cross method, in the original and in the improved one, the initial result of calculations in the iteration procedure is not flow, but rather a correction of flow. Unfortunately, these corrections should be added to or subtracted from flow calculated in the previous iteration according to complicated algebraic rules. Unlike the Hardy Cross method, which requires complicated formulas for flow corrections, the new Node-loop method does not need these corrections, as flow is computed directly. This is the main advantage of the new Node-loop method, as the number of iterations is the same as in the modified Hardy Cross method. Consequently, a complex algebraic scheme for the sign of the flow correction is avoided, while the final results remain accurate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference57 articles.

1. Analysis of Flow in Networks of Conduits or Conductors;Cross,1936

2. Efficient code for steady-state flows in networks;Epp;J. Hydraul. Div. Am. Soc. Civ. Eng.,1970

3. An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks

4. Distribution design for increased demand;Corfield,1974

5. A Gas Distribution Network Hydraulic Problem from Practice

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3