End-to-End Implicit Object Pose Estimation

Author:

Cao Chen1,Yu Baocheng1,Xu Wenxia1,Chen Guojun1,Ai Yuming1

Affiliation:

1. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China

Abstract

To accurately estimate the 6D pose of objects, most methods employ a two-stage algorithm. While such two-stage algorithms achieve high accuracy, they are often slow. Additionally, many approaches utilize encoding–decoding to obtain the 6D pose, with many employing bilinear sampling for decoding. However, bilinear sampling tends to sacrifice the accuracy of precise features. In our research, we propose a novel solution that utilizes implicit representation as a bridge between discrete feature maps and continuous feature maps. We represent the feature map as a coordinate field, where each coordinate pair corresponds to a feature value. These feature values are then used to estimate feature maps of arbitrary scales, replacing upsampling for decoding. We apply the proposed implicit module to a bidirectional fusion feature pyramid network. Based on this implicit module, we propose three network branches: a class estimation branch, a bounding box estimation branch, and the final pose estimation branch. For this pose estimation branch, we propose a miniature dual-stream network, which estimates object surface features and complements the relationship between 2D and 3D. We represent the rotation component using the SVD (Singular Value Decomposition) representation method, resulting in a more accurate object pose. We achieved satisfactory experimental results on the widely used 6D pose estimation benchmark dataset Linemod. This innovative approach provides a more convenient solution for 6D object pose estimation.

Funder

Research and application of key technologies of intelligent inspection robots in the core backbone computer room of 5G bearer network

Research on intelligent inspection system of data room based on intelligent robot

Research on intelligent inspection robot system in IDC computer room

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3