Dwell Time Estimation of Import Containers as an Ordinal Regression Problem

Author:

De Armas Jacomino LaidyORCID,Medina-Pérez Miguel AngelORCID,Monroy RaúlORCID,Valdes-Ramirez DaniloORCID,Morell-Pérez CarlosORCID,Bello RafaelORCID

Abstract

The optimal stacking of import containers in a terminal reduces the reshuffles during the unloading operations. Knowing the departure date of each container is critical for optimal stacking. However, such a date is rarely known because it depends on various attributes. Therefore, some authors have proposed estimation algorithms using supervised classification. Although supervised classifiers can estimate this dwell time, the variable “dwell time” takes ordered values for this problem, suggesting using ordinal regression algorithms. Thus, we have compared an ordinal regression algorithm (selected from 15) against two supervised classifiers (selected from 30). We have set up two datasets with data collected in a container terminal. We have extracted and evaluated 35 attributes related to the dwell time. Additionally, we have run 21 experiments to evaluate both approaches regarding the mean absolute error modified and the reshuffles. As a result, we have found that the ordinal regression algorithm outperforms the supervised classifiers, reaching the lowest mean absolute error modified in 15 (71%) and the lowest reshuffles in 14 (67%) experiments.

Funder

Universidad Central "Marta Abreu" de Las Villas

Instituto Tecnológico y de Estudios Superiores de Monterrey

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3