Smart Grid Data Management in a Heterogeneous Environment with a Hybrid Load Forecasting Model

Author:

Albayati AmmarORCID,Abdullah Nor FadzilahORCID,Abu-Samah AsmaORCID,Mutlag Ammar Hussein,Nordin RosdiadeeORCID

Abstract

The power consumption model can be represented in multiple dimensions, and it is proliferating to include structured and unstructured data. Dealing with such heterogeneous data and analyzing it in real-time is an ongoing challenge in the energy sector. Moreover, converting these data into useful information remains an open research area. This study focuses on modeling realistic and efficient power consumption data management in the heterogeneous environment for the Iraq energy sector and suggested a novel hybrid load forecasting model. The proposed system is named the Power Consumption Information and Analytics System (PIAS), which can perform various roles such as data acquisition from mechanical and smart meters, data federation, data management, data visualization, data analysis, and load forecasting. The proposed system has a four-tier framework (Data, Analytics, Application, and Presentation). Each layer is discussed in detail in this study to overcome the anticipated challenges. Furthermore, this study discusses the proposed system by applying two case studies. The first case study discusses power consumption data management, while the second introduces a novel hybrid load forecasting model using Fuzzy C-Means clustering, Auto Regressive Integrated Moving Average (ARIMA), and Gradient Boosted Tree Learner. The dataset used in this forecasting is based on a 1-year duration dated 1 January 2019 to 31 December 2019, on an hourly basis (365 * 24) for the Baghdad governorate. The results showed high accuracy in load forecasting with improved error rates (MAPE, MAE, and RMSE) achievements in comparison with other evaluated models such as standalone ARIMA and Gradient Boosted Trees methods.

Funder

Malaysian Ministry of Higher Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3