Hybrid Early Warning System for Rock-Fall Risks Reduction

Author:

Abdelmaboud AbdelzahirORCID,Abaker MohammedORCID,Osman MagdiORCID,Alghobiri Mohammed,Abdelmotlab Ahmed,Dafaalla HatimORCID

Abstract

Rock-fall is a natural threat resulting in many annual economic costs and human casualties. Constructive measures including detection or prediction of rock-fall and warning road users at the appropriate time are required to prevent or reduce the risk. This article presents a hybrid early warning system (HEWS) to reduce the rock-fall risks. In this system, the computer vision model is used to detect and track falling rocks, and the logistic regression model is used to predict the rock-fall occurrence. In addition, the hybrid risk reduction model is used to classify the hazard levels and delivers early warning action. In order to determine the system’s performance, this study adopted parameters, namely overall prediction performance measures, based on a confusion matrix and reliability. The results show that the overall system accuracy was 97.9%, and the reliability was 0.98. In addition, a system can reduce the risk probability from (6.39 × 10−3) to (1.13 × 10−8). The result indicates that this system is accurate, reliable, and robust; this confirms the purpose of the HEWS to reduce rock-fall risk.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Intelligent Monitoring of Rockfall in the Complex Environment;Environmental Science and Engineering;2024

2. End-to-End Rockfall Detection Based on DINO;Proceedings of the 2023 3rd Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence and Big Data Forum;2023-09-22

3. Deep Learning- and IoT-Based Framework for Rock-Fall Early Warning;Applied Sciences;2023-09-04

4. Energy Criterion for Fracture of Rocks and Rock-like Materials on the Descending Branch of the Load–Displacement Curve;Materials;2022-11-09

5. Research on the Impact Force of Rockfall Impacting Sand Cushions with Different Shapes;Applied Sciences;2022-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3