Comparison of Microbial Gene Diversity in Grassland Topsoil Depending on Soil Quality

Author:

Lee Siwon,Kim HeejungORCID,Yang Jae E,Ryu Han-Sun,Moon Jinah,Lee Jin-YoungORCID,Lee Hyunji

Abstract

Soil has multiple functions, including the provision of habitat to organisms, and most biological activities occur in the surface soil. Due to the negative effects of soil erosion, efforts for soil conservation are being made, including the development of a reliable index that can help assess soil quality. In this study, the physical and chemical properties and biological genes from grassland topsoil were analyzed, in order to identify surface soil organism markers that could be used as a soil quality index. Six spots of grassland topsoil were analyzed, one high-quality and five low-quality, based on a web-based soil quality assessment module. Consequently, eukaryotes and prokaryotes with different soil quality ratios were compared and examined. The following bacteria and archaea have the potential to be used in soil quality assessment: circulation of materials including nitrogen, Nitrospira spp., Candidatus Nitrososphaera, and Candidatus Nitrosotalea; biological purification, Geobacter spp.; pathogens, Burkholderia spp., Paraburkholderia spp., Pseudomonas brassicacearum, and Rhizobacter spp.; antibiotic secretion, Candidatus Udaeobacter; and material degradation Steroidobacter spp. and Rhodanobacter spp. This study provides primary data for identifying biological markers for soil quality evaluation. In the future, a wider variety of data need to be accumulated to develop a highly reliable index related to soil quality.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference57 articles.

1. Integrated Management of Surface Soil Environment with Tracking and Prediction Technology,2019

2. Soil depth and grassland origin cooperatively shape microbial community co‐occurrence and function

3. Microbial indicators for soil quality

4. Estimating of the greenhouse gas mitigation and function of water resources conservation through conservation of surface soils erosion and policy suggestion;Oh;J. Soil Groundwater Environ.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3