Optimization Design of Extrusion Roller of RP1814 Roller Press Based on ANSYS Workbench

Author:

Wei WeihuaORCID,Peng FangxuORCID,Li Yingli,Chen Bingrui,Xu Yiqi,Wei Yu

Abstract

Firstly, the force of an extrusion roller under actual working condition was analyzed while the contact stress between the roller shaft and the roller sleeve and the extrusion force between the roller sleeve and the material were calculated. Secondly, static analysis of the extrusion roller was carried out using ANSYS software, and conclusively, the stress concentration appears at the roller sleeve’s inner ring step. Furthermore, an optimization scheme of the setting transition arc at the step of the contact surface between roller shaft and roller sleeve was proposed, and a simulation test was carried out., Finally, the maximum equivalent stress of the extrusion roller was set at the minimum value of the objective function; the extrusion roller was further optimized by using the direct optimization module in ANSYS Workbench. The results from optimization show that the maximum equivalent stress is reduced by 29% and the maximum deformation is decreased by 28%. It can be seen that the optimization scheme meets the strength and deformation requirements of the extrusion roller design. The optimization scheme can effectively improve the bearing capacity of the extrusion roller and reduce its production cost. This can provide a reference for the design of the roller press.

Funder

Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology

Jiangsu “Six Talent Peak” Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3