Abstract
Deflections are commonly measured in the static structural system identification of structures. Comparatively less attention has been paid to the possibility of measuring rotations for structural system identification purposes, despite the many advantages of using inclinometers, such as a high resolution and being reference free. Although some work using rotations can be found in the literature, this paper, for the very first time, proposes a statistical analysis that justifies the theoretical advantage of measuring rotations. The analytical expressions for the target parameters are obtained via static structural system identification using the constrained observability method first. Combined with the inverse distribution theory, the probability density function of the estimations of the target parameters can be obtained. Comparative studies on a simply supported bridge and a frame structure demonstrate the advantage of measuring rotations regarding the unbiasedness and the extent of variation in the estimations. To achieve robust parameter estimations, four strategies to use redundant rotations are proposed and compared. Numerical verifications on a bridge structure and a high-rise building have shown promising results.
Funder
Scientific Research Fund of the Institute of Engineering Mechanics, China Earthquake Administration
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献