Empirical Approach to Defect Detection Probability by Acoustic Emission Testing

Author:

Barat Vera,Marchenkov ArtemORCID,Ivanov Valery,Bardakov Vladimir,Elizarov Sergey,Machikhin AlexanderORCID

Abstract

Estimation of probability of defect detection (POD) is one of the most important problems in acoustic emission (AE) testing. It is caused by the influence of the material microstructure parameters on the diagnostic data, variability of noises, the ambiguous assessment of the materials emissivity, and other factors, which hamper modeling the AE data, as well as the a priori determination of the diagnostic parameters necessary for calculating POD. In this study, we propose an empirical approach based on the generalization of the experimental AE data acquired under mechanical testing of samples to a priori estimation of the AE signals emitted by the defect. We have studied the samples of common industrial steels 09G2S (similar to steel ANSI A 516-55) and 45 (similar to steel 1045) with fatigue cracks grown in laboratory conditions during cyclic testing. Empirical generalization of data using probabilistic models enables estimating the conditional probability of record emissivity and amplitudes of AE signals. This approach allows to eliminate the existing methodological gap and to build a comprehensive method for assessing the probability of fatigue cracks detection by the AE testing.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to non-destructive material characterizations;Non-Destructive Material Characterization Methods;2024

2. Study on the mechanical properties and acoustic emission signal characteristics of freezing pipe;Frontiers in Earth Science;2023-12-27

3. Burst Signal Extract and Features Analysis for using Acoustic Emission in Machine Learning;Journal of Power System Engineering;2023-02-28

4. Application of statistical analysis methods to increase the accuracy of the standard linear location algorithm;PROCEEDINGS OF INTERNATIONAL CONFERENCE OF YOUNG SCIENTISTS AND STUDENTS “TOPICAL PROBLEMS OF MECHANICAL ENGINEERING” ToPME 2021: Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);2023

5. Non-destructive Testing of Welding Defects Using Machine Learning Algorithms Based on Acoustic Emission Data;Advances in Mechanical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3