Arrays of Sub-Terahertz Cryogenic Metamaterial

Author:

Tarasov MikhailORCID,Gunbina Aleksandra,Chekushkin Artem,Vdovin Vyacheslav,Kalaboukhov AlekseiORCID

Abstract

Integrated quasi-optical cryogenic terahertz receivers contain arrays of detectors, quasi-optical filters, interferometers, and other metamaterials. Matrices of quasi-optical band-pass, low-pass, and high-pass filters, Fabry–Perot grid interferometers, and arrays of half-wave and electrically small antennas with superconductor-insulator-normal metal-insulator-superconductor (SINIS) sub-terahertz wavelength range detectors were fabricated and experimentally studied on the same computational, technological, and experimental platform. For the design of the filters, we used the periodic frequency-selective surfaces (FSS) approach, contrary to detector arrays that can be presented in a model of distributed absorbers. The structures were fabricated using direct electron beam lithography, thermal shadow evaporation, lift-off, alternatively magnetron sputtering, and chemical and plasma etching. The numerical simulation methods of such structures are sufficiently different: for the reactive matrices with low losses, the approximation of an infinite structure with periodic boundary conditions is applicable, and for the arrays of detectors with dissipative elements of absorbers, a complete analysis of the finite structure with hundreds of interacting ports is applicable. The difference is determined by the presence of dissipation in the detector arrays, the phase of the reflected or re-emitted signal turned out to be undefined and the Floquet periodic boundary conditions are correct only for a phased array antenna. The spectral characteristics of the created filters, interferometers, and antenna arrays were measured in the frequency range 50–600 GHz.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3