A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors

Author:

Polychronopoulos Nickolas D.,Gkountas Apostolos A.,Sarris Ioannis E.ORCID,Spyrou Leonidas A.

Abstract

The modelling of magnetic hyperthermia using nanoparticles of ellipsoid tumor shapes has not been studied adequately. To fill this gap, a computational study has been carried out to determine two key treatment parameters: the therapeutic temperature distribution and the extent of thermal damage. Prolate and oblate spheroidal tumors, of various aspect ratios, surrounded by a large healthy tissue region are assumed. Tissue temperatures are determined from the solution of Pennes’ bio-heat transfer equation. The mortality of the tissues is determined by the Arrhenius kinetic model. The computational model is successfully verified against a closed-form solution for a perfectly spherical tumor. The therapeutic temperature and the thermal damage in the tumor center decrease as the aspect ratio increases and it is insensitive to whether tumors of the same aspect ratio are oblate or prolate spheroids. The necrotic tumor area is affected by the tumor prolateness and oblateness. Good comparison is obtained of the present model with three sets of experimental measurements taken from the literature, for animal tumors exhibiting ellipsoid-like geometry. The computational model enables the determination of the therapeutic temperature and tissue thermal damage for magnetic hyperthermia of ellipsoidal tumors. It can be easily reproduced for various treatment scenarios and may be useful for an effective treatment planning of ellipsoidal tumor geometries.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3