Design of a Dual-Band Compact Integrated Remote Sensing System for Visible Light and Long-Wave Infrared

Author:

Li Ruichang,Zou Gangyi,Feng Liangjie,Fan Xuewu

Abstract

This paper presents a design of a dual-band integrated space telescope system for visible light and long-wave infrared. The system can simultaneously image the visible light band of 450–900 nm and the long-wave infrared band of 7700–10,500 nm. The dual-band integrated imaging system can freely switch the observation band to adapt to different scenes and environmental changes. The camera can also further expand its capabilities in the fields of multi-spectral observation and low-light observation by collocation with different detectors. This design is based on a coaxial reflection system, the two bands share the camera’s primary and secondary mirrors, and the separation of the two bands is achieved through a separate field of view design. After simulation, the average Modulation Transfer Function (MTF) value of the visible light band of the system at 50 lp/mm (line pairs per millimeter) reaches 0.45, and the average MTF value of the long-wave infrared band at 50 lp/mm reaches 0.36. In addition, tolerance analysis, ambient temperature analysis and transmittance analysis of the integrated system are carried out in this paper to further improve the integrated system scheme, and the feasibility of the system is further verified.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reflective Optical Systems for Aerospace Applications;Journal of the Korean Society for Precision Engineering;2023-11-01

2. Image restoration techniques for space-based lightweight optically sparse aperture Earth-observation telescopes in the longwave infrared domain;Image and Signal Processing for Remote Sensing XXIX;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3