Author:
Sakudo Akikazu,Tsuji Yosuke
Abstract
Prions are highly resistant to physical or chemical damage, although previous studies have shown that STERRAD®, a hydrogen gas plasma sterilizer using radiofrequency (RF) discharge, has an inactivation effect. Here, the effect of hydrogen peroxide gas combined with dielectric barrier discharge (DBD) plasma and corona discharge plasma using a RENO-S130 sterilizer on scrapie prions was examined. Scrapie prion-infected mouse brain homogenate was air-dried on a cover glass, sealed in a Tyvek pouch, and subjected to RENO-S130 treatment using either non-lumen mode (28 min) or Eco mode (45 min) with hydrogen peroxide gas derived from 50% hydrogen peroxide. Control (untreated) samples were prepared on a cover glass using the same procedure but without exposure to RENO-S130. PrPres (proteinase K (PK)-resistant prion protein), an index of the conformational variant of prion protein (PrPSc), was decreased by treatment with RENO-S130 under both modes of operation. Specifically, PrPres was identified after the 1st and 2nd cycles of protein misfolding cyclic amplification (PMCA) in control samples but was below the detection limit in RENO-S130-treated samples. A bioassay showed that treatment of prions with RENO-S130 (non-lumen or Eco mode) significantly prolonged mouse survival time. Taken together, these findings show hydrogen peroxide gas combined with DBD/corona discharge plasma can inactivate prions by reducing prion propagation and prion infectivity. This treatment is potentially applicable to the sterilization of prion-contaminated heat-sensitive medical devices.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献