A Theoretical Analysis of Magnetic Particle Alignment in External Magnetic Fields Affected by Viscosity and Brownian Motion

Author:

Krafcik AndrejORCID,Babinec PeterORCID,Strbak OliverORCID,Frollo IvanORCID

Abstract

The interaction of an external magnetic field with magnetic objects affects their response and is a fundamental property for many biomedical applications, including magnetic resonance and particle imaging, electromagnetic hyperthermia, and magnetic targeting and separation. Magnetic alignment and relaxation are widely studied in the context of these applications. In this study, we theoretically investigate the alignment dynamics of a rotational magnetic particle as an inverse process to Brownian relaxation. The selected external magnetic flux density ranges from 5μT to 5T. We found that the viscous torque for arbitrary rotating particles with a history term due to the inertia and friction of the surrounding ambient water has a significant effect in strong magnetic fields (range 1–5T). In this range, oscillatory behavior due to the inertial torque of the particle also occurs, and the stochastic Brownian torque diminishes. In contrast, for weak fields (range 5–50μT), the history term of the viscous torque and the inertial torque can be neglected, and the stochastic Brownian torque induced by random collisions of the surrounding fluid molecules becomes dominant. These results contribute to a better understanding of the molecular mechanisms of magnetic particle alignment in external magnetic fields and have important implications in a variety of biomedical applications.

Funder

Slovak Research and Development Agency

Slovak Scientific Grant Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3