WiFi Positioning in 3GPP Indoor Office with Modified Particle Swarm Optimization

Author:

Oh Sung HyunORCID,Kim Jeong Gon

Abstract

With the start of the Fourth Industrial Revolution, Internet of Things (IoT), artificial intelligence (AI), and big data technologies are attracting global attention. AI can achieve fast computational speed, and big data makes it possible to store and use vast amounts of data. In addition, smartphones, which are IoT devices, are owned by most people. Based on these advantages, the above three technologies can be combined and effectively applied to navigation technology. In the case of an outdoor environment, global positioning system (GPS) technology has been developed to enable relatively accurate positioning of the user. However, due to the problem of radio wave loss because of many obstacles and walls, there are obvious limitations in applying GPS to indoor environments. Hence, we propose a method to increase the accuracy of user positioning in indoor environments using wireless-fidelity (Wi-Fi). The core technology of the proposed method is to limit the initial search region of the particle swarm optimization (PSO), an intelligent particle algorithm; doing so increases the probability that particles converge to the global optimum and shortens the convergence time of the algorithm. For this reason, the proposed method can achieve fast processing time and high accuracy. To limit the initial search region of the PSO, we first build an received signal strength indicator (RSSI) database for each sample point (SP) using a fingerprinting scheme. Then, a limited region is established through a fuzzy matching algorithm. Finally, the particles are randomly distributed within a limited region, and then the user’s location is positioned through a PSO. Simulation results confirm that the method proposed in this paper achieves the highest positioning accuracy, with an error of about 1 m when the SP interval is 3 m in an indoor environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3