Towards Single 2D Image-Level Self-Supervision for 3D Human Pose and Shape Estimation

Author:

Cha Junuk,Saqlain MuhammadORCID,Lee Changhwa,Lee Seongyeong,Lee Seungeun,Kim Donguk,Park Won-Hee,Baek Seungryul

Abstract

Three-dimensional human pose and shape estimation is an important problem in the computer vision community, with numerous applications such as augmented reality, virtual reality, human computer interaction, and so on. However, training accurate 3D human pose and shape estimators based on deep learning approaches requires a large number of images and corresponding 3D ground-truth pose pairs, which are costly to collect. To relieve this constraint, various types of weakly or self-supervised pose estimation approaches have been proposed. Nevertheless, these methods still involve supervision signals, which require effort to collect, such as unpaired large-scale 3D ground truth data, a small subset of 3D labeled data, video priors, and so on. Often, they require installing equipment such as a calibrated multi-camera system to acquire strong multi-view priors. In this paper, we propose a self-supervised learning framework for 3D human pose and shape estimation that does not require other forms of supervision signals while using only single 2D images. Our framework inputs single 2D images, estimates human 3D meshes in the intermediate layers, and is trained to solve four types of self-supervision tasks (i.e., three image manipulation tasks and one neural rendering task) whose ground-truths are all based on the single 2D images themselves. Through experiments, we demonstrate the effectiveness of our approach on 3D human pose benchmark datasets (i.e., Human3.6M, 3DPW, and LSP), where we present the new state-of-the-art among weakly/self-supervised methods.

Funder

R&D Program of the Korea Railroad Research Institute, Republic of Korea.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference66 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3