A New Inspiration in Bionic Shock Absorption Midsole Design and Engineering

Author:

Yu Hai-Bin,Zhang RuiORCID,Yu Guo-Long,Wang Hai-Tao,Wang Dao-Chen,Tai Wei-HsunORCID,Huang Jian-Long

Abstract

Inspired by the performance of the ostrich in terms of loading and high-speed moving ability, the purpose of this study was to design a structure and material on the forefoot and heel of the middle soles of sports shoes based on the high cushioning quality of the ostrich toe pad by applying bionic engineering technology. The anatomical dissection method was used to analyze the ostrich foot characteristics. The structure and material of the bionic shock absorption midsole were designed according to the principles of bionic engineering and reverse engineering. F-Scan and numerical simulation were used to evaluate the bionic shock absorption midsole performance. The results showed that the bionic shock absorption midsole decreased the peak pressure (6.04–12.27%), peak force (8.62–16.03%), pressure–time integral (3.06–12.66%), and force–time integral (4.06–10.58%) during walking and brisk walking. In this study, the biomechanical effects to which the bionic shock absorption midsole structure was subjected during walking and brisk walking exercises were analyzed. The bionic midsole has excellent shock resistance. It is beneficial for the comfort of the foot during exercise and might reduce the risk of foot injuries during exercise.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3