Mechanism Analysis of the Influence of Seat Attributes on the Seat Dip Effect in Music Halls

Author:

Min HequnORCID,Liao Yitian

Abstract

The seat dip effect (SDE) is an acoustic phenomenon of low-frequency band attenuation that occurs in the music halls when the sound of the music passes at a near grazing incidence over the seats. In this paper, the numerical simulations on the basis of the finite element method are conducted to study the influence of seat attributes (seat height, seat spacing and seat absorption) on the SDE and the corresponding mechanism. The mapping of sound spatial distribution related to the SDE is employed to observe the behavior of sound between the seats. The results show that the dip frequency of the SDE can be shifted to frequencies lower than theoretical values when the seat height is smaller than the seat spacing. Additionally, the SDE attenuation can be distinctly suppressed in a sequence from the front seats to the rear seats with an absorption improvement to the seat back or cushion, and the seat back absorption is more effective than the cushion absorption. A mechanism analysis reveals that the SDE is highly associated with standing waves inside the seat gaps and with the “diffusion” effect on the grazing incident waves by energy flow vortexes around the top surfaces of the seats.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the seat-dip effect using finite-difference time-domain simulations;The Journal of the Acoustical Society of America;2023-09-01

2. Special Issue: Advances in Architectural Acoustics;Applied Sciences;2022-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3